Abstract

Reinforcements for the pulmonary autograft (PA) in the Ross operation have been introduced to avoid the drawback of conduit expansion and failure. With the aid of an in silico simulation, the biomechanical boundaries applied to a healthy PA during the operation were studied to tailor the best implant technique to prevent reoperation. Follow-up echocardiograms of 66 Ross procedures were reviewed. Changes in the dimensions and geometry of reinforced and non-reinforced PAs were evaluated. Miniroot and subcoronary implantation techniques were used in this series. Mechanical stress tests were performed on 36 human pulmonary and aortic roots explanted from donor hearts. Finite element analysis was applied to obtain high-fidelity simulation under static and dynamic conditions of the biomechanical properties and applied stresses on the PA root and leaflet and the similar components of the native aorta. The non-reinforced group showed increases in the percentages of the mean diameter that were significantly higher than those in the reinforced group at the level of the Valsalva sinuses (3.9%) and the annulus (12.1%). The mechanical simulation confirmed geometrical and dimensional changes detected by clinical imaging and demonstrated the non-linear biomechanical behaviour of the PA anastomosed to the aorta, a stiffer behaviour of the aortic root in relation to the PA and similar qualitative and quantitative behaviours of leaflets of the 2 tissues. The annulus was the most significant constraint to dilation and affected the distribution of stress and strain within the entire complex, with particular strain on the sutured regions. The PA was able to evenly absorb mechanical stresses but was less adaptable to circumferential stresses, potentially explaining its known dilatation tendency over time. The absence of reinforcement leads to a more marked increase in the diameter of the PA. Preservation of the native geometry of the PA root is crucial; the miniroot technique with external reinforcement is the most suitable strategy in this context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.