Abstract

Urbanization has produced various social, environmental, and hydrological impacts, such as reduced biodiversity, increased urban temperatures, ecosystem degradation, air and water pollution, changes to hydrological processes, groundwater recharge alterations, increased prevalence of floods, vegetation removal, and potential increases in unstable soils. Finding solutions to mitigate the impacts of urbanization is of vital importance in the development and planning of cities, and particularly so for developing countries. One strategy gaining momentum is the use of green roofs and larger green areas (greater green cover under trees, with the purpose of increasing the permeable area) for runoff control. In this study, a simulation was carried out using the i-Tree Hydro software that involved the urban basin in the Fontibón area of Bogotá, Colombia, with the aim of observing the hydrological benefits of trees, green areas, and permeable zones. Five scenarios were proposed in which green roof coverage was implemented (20% and 50% increases in green areas in Scenarios 1 and 2), coverage under existing trees was enhanced (50% and 100% increase in Scenarios 4 and 5), and finally a complete removal of green zones in Fontibón was simulated (Scenario 3). The town is relatively susceptible to a reduction in its existing green areas, with an increase in total flow of more than 50% for one scenario considered. Thus, an increase in the permeable coverage under trees (50% and 100% increased coverage under existing trees) provided the best strategy for mitigating the impacts of urbanization by reducing the total, maximum, and average impervious flow by 3%, 4%, and 8%, respectively. Finally, an increase in permeable zones corresponding to plants was proposed via the implementation of green roofs. However, this strategy showed a response to the reduction in the lowest total flow at 1%.

Highlights

  • More people currently live in urban areas than in rural ones [1]; by 2014, 54% of the world population were living in urban areas and it is projected that by 2050 66% of the population will live in this type of zone [2]

  • Urban green areas are used as a strategy to prevent flooding since they increase the permeable surface within basins [19,20], on the other hand, some research has shown that the green roof help to reduce the annual runoff volume by 40% and peak discharge by 15% [21]

  • Useful strategies will reduce peak flows in terms of both maximum and total flow resulting from intense rainfall, and increase the flow into groundwater resulting from increased infiltration and flow into permeable zones

Read more

Summary

Introduction

More people currently live in urban areas than in rural ones [1]; by 2014, 54% of the world population were living in urban areas and it is projected that by 2050 66% of the population will live in this type of zone [2]. Rapid growth and poor planning of cities has created numerous environmental, social, and landscape impacts, such as biodiversity loss, ecosystem degradation, natural resource pollution, an increased prevalence of floods, decreased area of natural resources, increased demand for water, elimination of vegetation layers, increased extent of unstable soils, decreased groundwater recharge, and various human health effects [3,4,5,6,7,8]. Urban green areas are used as a strategy to prevent flooding since they increase the permeable surface within basins [19,20], on the other hand, some research has shown that the green roof help to reduce the annual runoff volume by 40% and peak discharge by 15% [21]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.