Abstract

To explore how the genome of an organism defines its growth, we have developed a computer simulation for the intracellular growth of phage T7 on its E. coli host. Our simulation, which incorporates 30 years of genetic, biochemical, physiological, and biophysical data, is used here to study how the intracellular resources of the host, determined by the specific growth rate of the host, contribute toward phage development. It is also used to probe how changes in the linear organization of genetic elements on the T7 genome can affect T7 development. Further, we show how time-series trajectories of T7 mRNA and protein levels generated by the simulation may be used as raw data to test data-mining strategies, specifically, to identify partners in protein-protein interactions. Finally, we suggest how generalization of this work can lead to a knowledge-driven simulation for the growth of any virus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.