Abstract
The aim of this work is to develop a computational model to study the extrinsic regulation of the heart rate variability (HRV) during sympathetic and/or vagal stimulation. The model here proposed is based on two recent models of the sinoatrial node cell (SANC) action potential and the influence of the autonomic nervous system (ANS) on the activity of ionic channels of SANCs. The HRV was simulated by applying a random frequency stimulation using both a normal and a beta probability density function (PDF) for different ranges of stimulation frequencies. The HRV was then analyzed by computing the scale exponent using detrended fluctuation analysis. We found that our model reproduces the value of the scale exponent observed in healthy humans (α = 1.07 ± 0.05) when simultaneous vagal and sympathetic stimulus (with beta and normal PDFs, respectively) over the frequency range from 0 to 10 Hz are applied. Our model also predicts a Brownian motion behavior when the muscarinic receptors are blocked (α = 1.8) and the white noise behavior when the b-adrenergic receptors are blocked (α = 0.5). Our results shed light on how the ANS regulates the HRV in healthy conditions, where it is not enough to consider only one stimulation pathway with a simple normal PDF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.