Abstract
The outgrowth of tiller buds in Poaceae is influenced by the ratio of red to far-red light irradiance (R:FR). At each point in the plant canopy, R:FR is affected by light scattered by surrounding plant tissues. This paper presents a three-dimensional virtual plant modelling approach to simulate local effects of R:FR on tillering in spring wheat (Triticum aestivum). R:FR dependence of bud outgrowth was implemented in a wheat model, using three hypothetical responses of bud extension to R:FR (unit step, curvilinear and linear response). Bud break occurred when a threshold bud length was reached. Simulations were performed for three plant population densities. In accordance with experimental observations, fewer tillers per plant were simulated for higher plant population densities. The linear and curvilinear responses caused a delay in the increase in tiller number compared with experimental data. The unit step response approached experimental results best. It is suggested that a model based on relatively simple relations can be used to simulate degree of tillering. This study has shown that the virtual plant approach is a promising tool with which to address crop morphological and ecological research questions where the determining factors act at the level of the individual plant organ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.