Abstract
We describe a general-purpose framework for formulating the dynamics of any subset of electronic reduced density matrix elements in terms of a formally exact generalized quantum master equation (GQME). Within this framework, the effect of coupling to the nuclear degrees of freedom, as well as to any projected-out electronic reduced density matrix elements, is captured by a memory kernel and an inhomogeneous term, whose dimensionalities are dictated by the number of electronic reduced density matrix elements included in the subset of interest. We show that the memory kernel and inhomogeneous term within such GQMEs can be calculated from projection-free inputs of the same dimensionality, which can be cast in terms of the corresponding subsets of overall system two-time correlation functions. The applicability and feasibility of such reduced-dimensionality GQMEs is demonstrated on the two-state spin-boson benchmark model. To this end, we compare and contrast the following four types of GQMEs: (1) a full density matrix GQME, (2) a single-population scalar GQME, (3) a populations-only GQME, and (4) a subset GQME for any combination of populations and coherences. Using a method based on the mapping Hamiltonian approach and linearized semiclassical approximation to calculate the projection-free inputs, we find that while single-population GQMEs and subset GQMEs containing only one population are less accurate, they can still produce reasonable results and that the accuracy of the results obtained via the populations-only GQME and a subset GQME containing both populations is comparable to that obtained via the full density matrix GQMEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.