Abstract

Carbon dioxide exchange with methane in the clathrate structure has been shown beneficial in laboratory experiments and has been suggested as a field-scale technique for production of natural gas from gas-hydrate bearing sediments. Furthermore, the method is environmentally attractive due to the formation of CO2-hydrate in the sediments, leading to the geosequestration of carbon dioxide. However, the knowledge is still limited on the impact of small-scale heterogeneities on hydrate dissociation kinetics. In the present study, we developed a model for simulating laboratory experiments of carbon dioxide injection into a pressure vessel containing a mixture of gas hydrate and quartz sand. Four experiments at different temperature and pressure conditions were modeled. The model assumes that the contents are ideally mixed and aims to estimate the effective dissociation rate of gas hydrate by matching the model results with the experimental observations. Simulation results indicate that with a marginal offset the model was able to simulate different hydrate dissociation experiments, in particular, those that are performed at high pressures and low temperatures. At low pressures and high temperatures large discrepancies were noticed between the model results and the experimental observations. The mismatches were attributed to the development of extremely heterogeneous flow patterns at pore-scale, where field-scale models usually assume the characteristics to be uniform. Through this modeling study we estimated the irreversible dissociation rate of methane- and CO2-hydrate as 0.02 and 0.03 mol m−3s−1, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.