Abstract

In this paper we propose one floor field cellular automaton model, which can simulate the bi-directional pedestrian flow at high densities. Based on the model rules proposed by Nowak and Schadschneider, we make some modifications, including changes of cell size, realistic velocity configurations and extended lateral movement. The best parameters are determined by the results of sensitivity analysis. Some data extracted from pedestrian flow experiments, including the fundamental diagrams and the lane numbers after lane formation, are used for model validations. When the corridor width is 2m, the simulation results show that the fundamental diagrams of bi-directional flow are quantitatively similar to the experimental results, and the lane formation could be successful at high densities. By comparing with the statistical results in the experiments, we find the probabilities of the occurrence of different lanes are similar to the experimental results: two-lane and three-lane states usually emerge, while the probability for more lanes is low. The inhomogeneous distributions of pedestrians also could be observed. We think our model could be a good choice for simulating the lane formation process at high densities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.