Abstract

The aggregation of the protein α-synuclein into amyloid deposits is associated with multiple neurological disorders, including Parkinson's disease. Soluble amyloid oligomers are reported to exhibit higher toxicity than insoluble amyloid fibrils, with dimers being the smallest toxic oligomer. Small molecule drugs, such as fasudil, have shown potential in targeting α-synuclein aggregation and reducing its toxicity. In this study, we use atomistic molecular dynamics simulations to demonstrate how fasudil affects the earliest stage of aggregation, namely dimerization. Our results show that the presence of fasudil reduces the propensity for intermolecular contact formation between protein chains. Consistent with previous reports, our analysis confirms that fasudil predominantly interacts with the negatively charged C-terminal region of α-synuclein. However, we also observe transient interactions with residues in the charged N-terminal and hydrophobic NAC regions. Our simulations indicate that while fasudil prominently interacts with the C-terminal region, it is the transient interactions with residues in the N-terminal and NAC regions that effectively block the formation of intermolecular contacts between protein chains and prevent early dimerization of this disordered protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.