Abstract

We investigate in some detail an alternative simulation strategy for lattice field theory based on the so-called worm algorithm introduced by Prokof'ev and Svistunov in 2001. It amounts to stochastically simulating the strong coupling expansion rather than the usual configuration sum. A detailed error analysis and an important generalization of the method are exemplified here in the simple Ising model. It allows for estimates of the two point function where in spite of exponential decay the signal to noise ratio does not degrade at large separation. Critical slowing down is practically absent. In the outlook some thoughts on the general applicability of the method are offered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.