Abstract

The environmental DNA (eDNA) method is a novel technique for precise and efficient biological surveillance. Although eDNA has been widely used to monitor various freshwater organisms, eDNA dynamics in streams remain poorly understood. In this study, we investigated the eDNA dynamics of common carp ( Cyprinus carpio) in a forested headwater stream affected by the effluent from a carp farm. We evaluated the longitudinal variation in carp eDNA along a river downstream from the farm and performed a temporal eDNA decay experiment using digital polymerase chain reaction. On the basis of the resulting decay constants, we built a model to simulate the advection and degradation of eDNA along the studied river. The observed eDNA flux (concentration multiplied by flow rate) decreased exponentially with distance downstream from the farm, and eDNA was detected 3 km downstream of the farm. Although the water temperatures were similar, the eDNA decay constant was lower in autumn than in summer. The simulated eDNA concentration was markedly larger (>10 times) than the observed concentration, suggesting that eDNA removal is accelerated in the stream environment compared to in conventional experimental settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.