Abstract

The dissociative adsorption energy of oxygen on Pt(111) is known to be coverage dependent. Simple Redhead analysis of temperature programmed desorption (TPD) experiments that assumes a coverage independent desorption barrier can lead to errors in estimated properties such as desorption barriers and adsorption energies. A simple correction is to assume a linear coverage depen- dence of the desorption barrier, but there is usually no formal justification given for that functional form. More advanced TPD analysis methods that are suitable for determining coverage dependent adsorption parameters are limited by their need for large amounts of high quality, low noise data. We present a method to estimate the functional form of the coverage dependent desorption barrier from density functional theory calculations for use in analysis of TPD spectra. Density functional theory was employed to calculate the coverage dependence of the adsorption energy. Simulated TPD spectra were then produced by empirically scaling the DFT based adsorption energies utilizing the Bronstead-Evans-Polyani relationship between adsorption energies and desorption barriers. The resulting simulated spectra show better agreement with the experimental spectra than spectra predicted using barriers that are either coverage-independent or simply linearly dependent on coverage. The empirically derived scaling of the desorption barriers for Pt(111) is shown to be useful in predicting the low coverage desorption barriers for oxygen desorption from other metal surfaces, which showed rea- sonable agreement with the reported experimental values for those other metals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.