Abstract
Carbonyl groups (C=O) play crucial roles in the photophysics and photochemistry of biological systems. O1s x-ray photoelectron spectroscopy allows for targeted investigation of the C=O group, and the coupling between C=O vibration and O1s ionization is reflected in the fine structures. To elucidate its characteristic vibronic features, systematic Franck-Condon simulations were conducted for six common biomolecules, including three purines (xanthine, caffeine, and hypoxanthine) and three pyrimidines (thymine, 5F-uracil, and uracil). The complexity of simulation for these biomolecules lies in accounting for temperature effects and potential tautomeric variations. We combined the time-dependent and time-independent methods to efficiently account for the temperature effects and to provide explicit assignments, respectively. For hypoxanthine, the tautomeric effect was considered by incorporating the Boltzmann population ratios of two tautomers. The simulations demonstrated good agreement with experimental spectra, enabling differentiation of two types of carbonyl oxygens with subtle local structural differences, positioned between two nitrogens (O1) or between one carbon and one nitrogen (O2). The analysis provided insights into the coupling between C=O vibration and O1s ionization, consistently showing an elongation of the C=O bond length (by 0.08-0.09Å) upon O1s ionization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.