Abstract

ABSTRACTScanning tunneling microscopy (STM) is one of the most successful experimental tools for probing the structure of semiconductor surfaces. However, care must be taken in interpreting the images at the atomistic limit. Often a “naive” interpretation of the STM image can yield an incorrect surface structure. We illustrate this situation via ab initio pseudopotential calculations for the STM image of the (110) GaAs surface. We will compare theoretical STM images to experimental images for the relaxed surface and for a surface with an As vacancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.