Abstract

Stiffness degradation and damping represent some of the most well-known aspects of cyclic soil behavior. While standard equivalent linear approaches reproduce these features by (separately) prescribing stiffness reduction and damping curves, in this paper a multiaxial, 3D, viscoelastic – plastic model is developed for the simultaneous simulation of both cyclic curves over a wide cyclic shear strain range.The proposed constitutive relationship is based on two parallel resisting/dissipative mechanisms, purely frictional (elastic–plastic) and viscous. The frictional mechanism is formulated as a bounding surface plasticity model with vanishing elastic domain, including pressure-sensitive failure locus and non-associative plastic flow – which are essential for effective stress analysis. At the same time, the use of the parallel viscous mechanism is shown to be especially beneficial to improve the simulation of the overall dissipative performance.In order to enable model calibration from stiffness degradation (G/Gmax) and damping curves, the constitutive equations are purposely kept as simple as possible with a low number of material parameters. Although the model performance is here explored with reference to pure shear cyclic tests, the 3D, multiaxial formulation is appropriate for general loading conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.