Abstract
We present a computationally highly efficient full-wave spectral model of OCT-scan formation with the following features: allowance of arbitrary phase-amplitude profile of illuminating beams; absence of paraxial approximation; utilization of broadly used approximation of ballistic scattering by discrete scatterers without limitations on their density/location and scattering strength. The model can easily incorporate the wave decay, dispersion, measurement noises with given signal-to-noise ratios and arbitrary inter-scan displacements of scatterers. We illustrate several of such abilities, including comparative simulations of OCT-scans for Bessel versus Gaussian beams, presence of arbitrary aberrations at the tissue boundary and various scatterer motions. The model flexibility and computational efficiency allow one to accurately study various properties of OCT-scans for developing new methods of their processing in various biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.