Abstract

In this paper, we investigate how 1-D reversible cellular automata (RCAs) can simulate reversible Turing machines (RTMs) and cyclic tag systems (CTSs). A CTS is a universal string rewriting system proposed by M. Cook. First, we show that for any m -state n -symbol RTM there is a 1-D 2-neighbor RCA with a number of states less than ( m + 2 n + 1 ) ( m + n + 1 ) that simulates it. It improves past results both in the number of states and in the neighborhood size. Second, we study the problem of finding a 1-D RCA with a small number of states that can simulate any CTS. So far, a 30-state RCA that can simulate any CTS and works on ultimately periodic infinite configurations has been given by K. Morita. Here, we show there is a 24-state 2-neighbor RCA with this property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.