Abstract

Re-reflections of arterial pressure waves at the aortic valve and their influence on aortic wave shape are only poorly understood so far. Therefore, the aim of this work is to establish a model enabling the simulation of re-reflection and to test its properties. A mathematical difference equation model is used for the simulations. In this model, the aortic blood pressure is split into its forward and backward components which are calculated separately. The respective equations include reflection percentages representing reflections throughout the arterial system and a reflection coefficient at the aortic valve. While the distal reflections are fixed, different scenarios for the reflection coefficient at the valve are simulated. The results show that the model is capable to provide physiological pressure curves only if re-reflections are assumed to be present during the whole cardiac cycle. The sensitivity analysis on the reflection coefficient at the aortic valve shows various effects of re-reflections on the modelled blood pressure curve. Higher levels of the reflection coefficient lead to higher systolic and diastolic pressure values. The augmentation index is notably influenced by the systolic level of the reflection coefficient. This difference equation model gives an adequate possibility to simulate aortic pressure incorporating re-reflections at the site of the aortic valve. Since a strong dependence of the aortic pressure wave on the choice of the reflection coefficient have been found, this indicates that re-reflections should be incorporated into models of wave transmission. Furthermore, re-reflections may also be considered in methods of arterial pulse wave analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.