Abstract

In this paper, molecular quantum computation is numerically studied with the quantum search algorithm (Grover's algorithm) by means of optimal control simulation. Qubits are implemented in the vibronic states of I2, while gate operations are realized by optimally designed laser pulses. The methodological aspects of the simulation are discussed in detail. We show that the algorithm for solving a gate pulse-design problem has the same mathematical form as a state-to-state control problem in the density matrix formalism, which provides monotonically convergent algorithms as an alternative to the Krotov method. The sequential irradiation of separately designed gate pulses leads to the population distribution predicted by Grover's algorithm. The computational accuracy is reduced by the imperfect quality of the pulse design and by the electronic decoherence processes that are modeled by the non-Markovian master equation. However, as long as we focus on the population distribution of the vibronic qubits, we can search a target state with high probability without introducing error-correction processes during the computation. A generalized gate pulse-design scheme to explicitly include decoherence effects is outlined, in which we propose a new objective functional together with its solution algorithm that guarantees monotonic convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.