Abstract

We use coarse-grained molecular dynamics simulations to study the precursor steps for fibril formation in methylcellulose solutions. Simulations of ring stacking between two collapsed methylcellulose chains demonstrate the existence of a capture radius that is much larger than that predicted by polymer diffusion alone. When two rings are in very close proximity, they stack together to form a fibril precursor. Simulations of stacks of such rings suggest that this structure is metastable. In contrast, chains that are within the capture radius but not in close proximity, as well as for systems containing both ringlike and relaxed chains, fibril-like structures form via a distinctly different mechanism. Irrespective of their initial arrangement, the chains undergo two specific conformational changes: (i) a part of either a ring or a randomly coiled chain splays out and (ii) the splayed chain subsequently engulfs a nearby chain if it is within a certain capture distance. The latter results are consistent with recent experimental measurements of fibril formation by short methylcellulose chains, which suggests the formation of a twisted bundle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.