Abstract
Post-depositional diagenetic alteration makes the accurate interpretation of key precipitation processes in ancient sediments, such as Precambrian banded iron formations (BIFs), difficult. While microorganisms are proposed as key contributors to BIF deposition, the diagenetic transformation of precursor Fe(III) minerals associated with microbial biomass had not been experimentally tested. We incubated mixtures of ferrihydrite (proxy for biogenic ferric oxyhydroxide minerals) and glucose (proxy for microbial biomass) in gold capsules at 1.2kbar and 170°C. Both wet chemical analysis and mineralogical methods (microscopy, X-ray diffraction and Mössbauer spectroscopy) were used to analyze the reaction products. Under these conditions, ferrihydrite (FeIII(OH)3) transforms to hematite (Fe2IIIO3), magnetite (FeIIFe2IIIO4), and siderite (FeIICO3). Silica-coated ferrihydrite prepared at conservative Si:Fe ratios (as predicted for the Precambrian oceans) and mixed with glucose yielded hematite and siderite, whereas magnetite could not be identified microscopically. Our results show that electron transfer from organic carbon to Fe(III) minerals during temperature/pressure diagenesis can drive the production of key BIF minerals. Our results also demonstrate that the post-depositional mineralogy of BIF does not directly archive the oceanic or atmospheric conditions present on Earth during their lithification. As a consequence, atmospheric composition regarding concentrations of methane and CO2 during the time of BIF mineral deposition cannot be directly inferred from BIF mineralogical data alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.