Abstract

This article aims to investigate the feasibility of incorporating of an artificial neural network (ANN) as an innovative technique for modelling the pavement structural condition, into pavement management systems. For the development of the ANN, strain assessment criteria are set in order to characterise the structural condition of flexible asphalt pavements with regards to fatigue failure. This initial task is directly followed with the development of an ANN model for the prediction of strains primarily based on in situ field gathered data and not through the usage of synthetic databases. For this purpose, falling weight deflectometer (FWD) measurements were systematically conducted on a highway network, with ground-penetrating radar providing the required pavement thickness data. The FWD data (i.e. deflections) were back-analysed in order to assess strains that would be utilised as output data in the process of developing the ANN model. A paper exercise demonstrates how the developed ANN model combined with the suggested conceptual approach for characterising pavement structural condition with regard to strain assessment could make provisions for pavement management activities, categorising network pavement sections according to the need for maintenance or rehabilitation. Preliminary results indicate that the ANN technique could help assist policy decision makers in deriving optimum strategies for the planning of pavement infrastructure maintenance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.