Abstract

Due to eutrophication, many lakes require periodic management and restoration, which becomes unpredictable due to internal nutrient loading. To provide better lake management and restoration strategies, a deterministic, one-dimensional water quality model MINLAKE2020 was modified from daily MINLAKE2012 by incorporating chlorophyll-a, nutrients, and biochemical oxygen demand models into the regional year-around temperature and dissolved oxygen (DO) model. MINLAKE2020 was applied to six lakes (varying depth and trophic status) in Minnesota focusing on studying the internal nutrient dynamics. The average root-mean-square errors (RMSEs) of simulated water temperature and DO in six lakes are 1.51 °C and 2.33 mg/L, respectively, when compared with profile data over 2–4 years. The average RMSE of DO simulation decreased by 24.2% when compared to the MINLAKE2012 model. The internal nutrient dynamics was studied by analyzing time series of phosphorus, chlorophyll-a, and DO over several years and by performing a sensitivity analysis of model parameters. A long-term simulation (20 years) of Lake Elmo shows that the simulated phosphorus release from sediment under the anoxic condition results in surface phosphorus increase, which matches with the observed trends. An average internal phosphorus loading increase of 92.3 kg/year increased the average daily phosphorus concentration by 0.0087 mg/L.

Highlights

  • When a waterbody undergoes any human-influenced ecosystem changes such as nutrient loading, extreme weather events, or invasive organisms; algal species can form dense overgrowths known as algal blooms

  • Since these blooms can produce toxins that are harmful to people and wildlife they are often referred to as harmful algal blooms (HAB)

  • Since this study focuses on the nutrients/phytoplankton internal dynamics/cycles, Figures 1–7 for water quality variables modelled by MINLAKE2020 do not include inflow and outflow as a part of mass balance processes

Read more

Summary

Introduction

When a waterbody undergoes any human-influenced ecosystem changes such as nutrient loading, extreme weather events, or invasive organisms; algal species (cyanobacteria) can form dense overgrowths known as algal blooms. Since these blooms can produce toxins that are harmful to people and wildlife they are often referred to as harmful algal blooms (HAB). HABs cause undesirable changes in aquatic resources such as reduced water clarity, hypoxia, fish kills, loss of biodiversity, and an increase in nuisance species [7,8]. Eutrophication has a detrimental effect on human health through increased exposure to cyanobacteria toxins [9,10], nitrites, and nitrates [7,8] in drinking water. Eutrophication can have serious effects on the social health of a community causing decreases in the activity that are dependent on aquatic or seafood harvests or tourism, resulting in disruption of social, and cultural practices

Objectives
Methods
Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.