Abstract

The paper considers nonlinear waves generated on a surface of a horizontal liquid layer put into an assigned stress field at the gas-liquid interface. The nature of branching for wavy modes from the undisturbed flow was studied. To accomplish this, the solution of a model nonlinear equation written for the deviation of the layer thickness from the undisturbed layer is found. Analytical solutions were constructed for nonlinear steady state-travelling solutions of this equation with the wavenumbers belonging to the vicinity of neutral wavenumbers. Steady state-travelling periodic solutions for the first family were simulated for the case of wavenumbers beyond this vicinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.