Abstract

A new system of equations has been derived to simulate the dynamics of long-wave perturbations on the surface of a thin layer of viscous liquid, flowing down a vertical plane and blown by co-current turbulent gas flow. The analysis of linear stability of the unperturbed flow has been performed. It has been found that at moderate Reynolds numbers of liquid, Benjamin linear model and model of boundary conditions transfer to the unperturbed level for a disturbed gas flow give qualitatively similar results. With decreasing Reynolds number differences between the results obtained by different turbulence models become more pronounced. In the case of small Reynolds numbers of fluid, the system of equations results in a single evolution equation for film thickness deviation from the undisturbed level. Some solutions of this equation have been considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.