Abstract

The translation model is a useful tool to characterize stochastic processes or random fields. In this paper, this model is extended to simulate stochastic processes with discrete marginal distributions. A theoretical discussion is elaborated on the properties of the correlation distortion function. The spectral representation method is employed to generate the underlying Gaussian process of the translation model. Efficient algorithms are developed to determine the power spectral density function (PSDF) $S_{z}(\omega)$ for Gaussian process. If the marginal distribution and PSDF of the target stochastic process are incompatible, two methods are presented to modify $S_{z}(\omega)$ . Finally, numerical examples are performed to check the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.