Abstract

The article presents a new model for the use in the framework of the Discrete Element Method to simulate the mixing processes of fresh concrete. The model provides a representation of liquid transfer from fluid entities or moist solid particles to dryer solid particles, including volume adaptation and mass conservation. The parameters and laws of force interactions between two particles are defined locally and depend on the amount and the properties of the liquid phase in the contact area. If two dry particles are in contact, friction and elastic forces are computed based on the Hertz-Mindlin model. If two particles with low moisture content are in contact, additional liquid bridge forces act on the particles. When the suspension state is reached, a Bingham-based model is applied. The simulation enables realistic estimation of the moisture distribution during the mixing processes, the corresponding changes in forces acting on the particles and consequently the effect on the rheological properties of the concrete mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.