Abstract

ABSTRACTStudy of long range transport of radioactive gases and aerosols is necessary to estimate radiological impact to the members of public and environment during nuclear reactor accidents. In the present work, an attempt has been made to employ an atmospheric circulation model that predicts meteorological parameters at the regional and global scales, and a transport model that utilizes these meteorological parameters for the radioactive aerosol dispersion. Non-hydrostatic Icosahedral Atmospheric Model (NICAM) coupled with Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS) is adapted to fulfil this objective, which is used for simulating effects of conventional aerosols on atmospheric pollution and climate system. As an illustrative case study, global simulation is carried out for a horizontal resolution of ~110 km to model the dispersion of radioactive aerosol (35S, 131I and 137Cs) releases from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. The results obtained from this case study are compared with the available literature data and other simulation results. The statistical analyses show that the comparisons are better for locations far away (> 150 km) from the emission location, and the results are further discussed. Continuous run of this system will help in predicting the activity concentration in forecast mode, and it may be used for decision support, particularly in the case of long range transport (> 100 km).

Highlights

  • Very low probable accidents in radiological facilities such as Fukushima Daiichi Nuclear Power Plant (FDNPP) may lead to the release of radioactive materials in the environment

  • Non-hydrostatic Icosahedral Atmospheric Model (NICAM) coupled with Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS) is adapted to fulfil this objective, which is used for simulating effects of conventional aerosols on atmospheric pollution and climate system

  • The present study demonstrates the applicability of NICAM-SPRINTARS for simulating long range transport of radioactive aerosols

Read more

Summary

Introduction

Very low probable accidents in radiological facilities such as Fukushima Daiichi Nuclear Power Plant (FDNPP) may lead to the release of radioactive materials in the environment. The radionuclides in the form of gases and aerosols are transported in the atmosphere from local to global scale based on the energy and quantity of release from these facilities. The study of long range transport of these radioactive materials assist in estimating their radiological consequences and nuclear emergency management. Atmospheric concentration of these radionuclides and their.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call