Abstract

□ From a training set of 7200 chemicals, a back-propagation neural network (BNN) model was developed for calculating the 1-octanol/water partition coefficient (log P) of molecules containing nitrogen, oxygen, halogen, phosphorus, and/or sulfur atoms. Chemicals were described by means of autocorrelation vectors encoding hydrophobicity, molar refractivity, H-bonding acceptor ability, and H-bonding donor ability. A 35/32/1 composite network composed of four configurations was selected as the final model (root-mean-square error (RMS)=0.37, r=0.97) because it provided the best simulation results (RMS=0.39, r=0.98) on an external testing set of 519 molecules. This final model compared favorably with a recently published BNN model using variables (atoms and bonds) derived from connection matrices

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.