Abstract

Bacillus cereus is a ubiquitous bacterial pathogen increasingly reported to be the causative agent of foodborne infections and intoxications. Since the enterotoxins linked to the diarrheal form of food poising are foremost produced in the human intestine, the toxic potential of enteropathogenic B. cereus strains is difficult to predict from studies carried out under routine cultivation procedures. In this study, toxigenic properties of a panel of strains (n = 19) of diverse origin were compared using cell culture medium pre-incubated with CaCo-2 cells to mimic intestinal growth conditions. Shortly after contact of the bacteria with the simulated host environment, enterotoxin gene expression was activated and total protein secretion of all strains was accelerated. Although the signal stimulating enterotoxin production still needs to be elucidated, it could be shown that it originated from the CaCo-2 cells. Overall, our study demonstrates that the currently used methods in B. cereus diagnostics, based on standard culture medium, are not allowing a conclusive prediction of the potential health risk related to a certain strain. Thus, these methods should be complemented by cultivation procedures that are simulating intestinal host conditions.

Highlights

  • Due to the secretion of various toxins linked to gastrointestinal as well as non-gastrointestinal diseases, Bacillus cereus presents a serious public health hazard (Stenfors Arnesen et al, 2008; Bottone, 2010)

  • Likewise to standard laboratory conditions (Jeßberger et al, 2015), our current work showed that even under simulated intestinal conditions enterotoxin gene transcription provides no reliable information about the toxic potential of a B. cereus isolate, which points toward determined as % transcription per OD600. (B) NheB productivity determined as reciprocal titer per OD600. (C) Efficiency of protein secretion determined as extracellular protein concentration per OD600

  • To determine the toxic potential of a B. cereus isolate, bacteria are usually cultivated under laboratory conditions, which stimulate maximal growth and enhance the amount of secreted toxins (Jeßberger et al, 2015)

Read more

Summary

Introduction

Due to the secretion of various toxins linked to gastrointestinal as well as non-gastrointestinal diseases, Bacillus cereus presents a serious public health hazard (Stenfors Arnesen et al, 2008; Bottone, 2010). The onset of symptoms linked to the emetic toxin cereulide occurs rapidly within 0.5–6 h while the diarrheal type has a long incubation time lasting 5–16 h (Ehling-Schulz and Messelhäusser, 2012). Cause of the latter type of illness, which is associated

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call