Abstract

In this study, a grain boundary model with three-dimensional (3D) cohesive elements for analyzing the intergranular stress corrosion cracking (IGSCC) on the crystal level in polycrystalline materials is presented. The objectives are to characterize the grain boundary microstructure and the fracture mechanism of IGSCC in AZ31 Mg alloy. In order to investigate the development of the microcrack and its effects on macrocrack evolution, a novel model of IGSCC propagation has been developed, in which the 3D Voronoi tessellations geometry is employed to model polycrystalline grain structures. And the 3D cohesive elements with zero constitutive thickness are directly inserted on the faces of two adjacent grains. The effect of the embrittlement due to the presence of hydrogen has also been included in the cohesive model. To validate the model, an IGSCC process of AZ31 Mg alloy in NaCl solution has been simulated, with the influence of hydrogen concentration being taken into account. It is found that damage develops at the triple lines between the grains and the combinations of grains can lead to high stresses at the grains boundary, especially those that are normal to the direction of the applied strain. In this paper, the effects of damage due to hydrogen and the grain sizes in microstructure are considered. The simulation results have a good consistency with the experimental phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.