Abstract

In this study we introduce a mesoscopic lipid-water-alcohol model. Dissipative particle dynamics (DPD) simulations have been used to investigate the induced interdigitation of bilayers consisting of double-tail lipids by adding alcohol molecules to the bilayer. Our simulations nicely reproduce the experimental phase diagrams. We find that alcohol can induce an interdigitated structure where the common bilayer structure changes into monolayer in which the alcohol molecules screen the hydrophobic tails from the water phase. At low concentrations of alcohol the membrane has domains of the interdigitated phase that are in coexistence with the common membrane phase. We compute the effect of the chain length of the alcohol on the phase behavior of the membrane and show that the stability of the interdigitated phase depends on the length of the alcohol. We show that we can reproduce the experimental hydrophobic thickness of the bilayer for various combinations of lipids and alcohols. We use our model to clarify some of the experimental questions related to the structure of the interdigitated phase and put forward a simple model that explains the alcohol chain length dependence of the stability of this interdigitated phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.