Abstract
ABSTRACTThe interest in using fibre‐reinforced composites in structural components is increasing. Some of these structural composites, such as wind turbine blades, aircraft components and torsion shafts are subject to fatigue loadings. It is widely accepted that fully reversed cyclic loading is the most adverse loading for fibre‐reinforced composites, but the modelling of the material behaviour under this loading condition is very difficult. In this paper, a damage model is presented for woven glass fibre‐reinforced composites subject to fully reversed cyclic loading. First fatigue experiments have been conducted in displacement‐controlled fully reversed bending and the stiffness degradation and damage patterns have been observed. Based on these experimental data, a damage model has been developed, which includes the in‐plane stress components and the degradation of the in‐plane elastic properties. The model has been implemented in a commercial finite‐element code and simulation of the successive stages in the fatigue life has been performed. The model has been validated for a plain woven glass fabric reinforced composite and simulated stiffness degradation, damage growth and damage distribution have been compared with experimental data.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.