Abstract

Abstract The widespread influence of reservoirs on global rivers makes representations of reservoir outflow and storage essential components of large-scale hydrology and climate simulations across the land surface and atmosphere. Yet, reservoirs have yet to be commonly integrated into earth system models. This deficiency influences model processes such as evaporation and runoff, which are critical for accurate simulations of the coupled climate system. This study describes the development of a generalized reservoir model capable of reproducing realistic reservoir behavior for future integration in a global land surface model (LSM). Equations of increasing complexity relating reservoir inflow, outflow, and storage were tested for 14 California reservoirs that span a range of spatial and climate regimes. Temperature was employed in model equations to modulate seasonal changes in reservoir management behavior and to allow for the evolution of management seasonality as future climate varies. Optimized parameter values for the best-performing model were generalized based on the ratio of winter inflow to storage capacity so a future LSM user can generate reservoirs in any grid location by specifying the given storage capacity. Model performance statistics show good agreement between observed and simulated reservoir storage and outflow for both calibration (mean normalized RMSE = 0.48; mean coefficient of determination = 0.53) and validation reservoirs (mean normalized RMSE = 0.15; mean coefficient of determination = 0.67). The low complexity of model equations that include climate-adaptive operation features combined with robust model performance show promise for simulations of reservoir impacts on hydrology and climate within an LSM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.