Abstract

Playing table tennis is a difficult motor task which requires fast movements, accurate control and adaptation to task parameters. Although human beings see and move slower than most robot systems they outperform all table tennis robots significantly. In this paper we study human table tennis and present a robot system that mimics human striking behavior. Therefore we model the human movements involved in hitting a table tennis ball using discrete movement stages and the virtual hitting point hypothesis. The resulting model is implemented on an anthropomorphic robot arm with 7 degrees of freedom using robotics methods. We verify the functionality of the model both in a physical realistic simulation of an anthropomorphic robot arm and on a real Barrett WAMTM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call