Abstract

Cosmic Ray transport in curved background magnetic fields is investigated using numerical Monte-Carlo simulation techniques. Special emphasis is laid on the Solar system, where the curvature of the magnetic field can be described in terms of the Parker spiral. Using such geometries, parallel and perpendicular diffusion coefficients have to be re-defined using the arc length of the field lines as the parallel displacement and the distance between field lines as the perpendicular displacement. Furthermore, the turbulent magnetic field is incorporated using a WKB approach for the field strength. Using a test-particle simulation, the diffusion coefficients are then calculated by averaging over a large number of particles starting at the same radial distance from the Sun and over a large number of turbulence realizations, thus enabling one to infer the effects due to the curvature of the magnetic fields and associated drift motions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.