Abstract
Carbon-based nanostructures have unparalleled electronic properties. At the same time, using an allotrope of carbon as the contacts can yield better device control and reproducibility. In this work, we simulate a single-electron transistor composed of a segment of a graphene nanoribbon coupled to carbon nanotubes electrodes. Using the non-equilibrium Green's function formalism we atomistically describe the electronic transport properties of the system including electron-electron interactions. Using this methodology we are able to recover experimentally observed phenomena, such as the Coulomb blockade, as well as the corresponding Coulomb diamonds. Furthermore, we separate the different contributions to transport and show that incoherent effects due to the interaction play a crucial role in the transport properties depending on the region of the stability diagram being considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.