Abstract

The inefficiency of star formation in massive elliptical galaxies is widely believed to be caused by the interactions of an active galactic nucleus (AGN) with the surrounding gas. Achieving a sufficiently rapid reddening of moderately massive galaxies without expelling too many baryons has however proven difficult for hydrodynamical simulations of galaxy formation, prompting us to explore a new model for the accretion and feedback effects of supermassive black holes. For high-accretion rates relative to the Eddington limit, we assume that a fraction of the accreted rest mass energy heats the surrounding gas thermally, similar to the ‘quasar mode’ in previous work. For low-accretion rates, we invoke a new, pure kinetic feedback model that imparts momentum to the surrounding gas in a stochastic manner. These two modes of feedback are motivated both by theoretical conjectures for the existence of different types of accretion flows as well as recent observational evidence for the importance of kinetic AGN winds in quenching galaxies. We find that a large fraction of the injected kinetic energy in this mode thermalizes via shocks in the surrounding gas, thereby providing a distributed heating channel. In cosmological simulations, the resulting model produces red, non-star-forming massive elliptical galaxies, and achieves realistic gas fractions, black hole growth histories and thermodynamic profiles in large haloes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.