Abstract

Reinforced concrete (RC) beams strengthened with fiber reinforced polymer (FRP) sheets may fail due to debonding failure. In such cases, the FRP sheet detaches from the RC beam before real damages are inflicted on the beam. In this paper, a procedure is developed based on smeared cracks approach for simulating the debonding process in FRP strengthened RC beams within the framework of finite element. For this purpose, the challenges facing the simulation of debonding mechanism are initially studied and a method is proposed in a second stage for combating these problems using the cohesive elements available in the ABAQUS software. The validity of the proposed method is then tested by modeling four beams from those reported in the literature and by comparing the results with the experimental ones. Given the acceptable agreement observed between the experimental and numerical simulation results, the method is claimed to be valid and practicable. In a later section of the present paper, the proposed method will be used to investigate the effects of length and width of the strengthening sheet on beam’s behavior and its failure mechanism. The results of the present study have revealed that longer FRP sheets increase load carrying capacity and mid-span displacement of strengthened RC beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.