Abstract

We simulate DNA suspension microchannel flows using the dissipative particle dynamics (DPD) method. Two developments make this simulation more realistic. One is to improve the dynamic characteristics of a DPD system by modifying the weighting function of the dissipative force and increasing its cutoff radius, so that the Schmidt number can be increased to a practical level. Another is to set up a wormlike chain model in the DPD framework, according to the measured extension properties of a DNA molecule in uniform flows. This chain model is then used to study flows of a DNA suspension through microchannels. Interesting results on the conformation evolution of DNA molecules passing through the microchannels, including periodic contraction-diffusion microchannels, are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.