Abstract

A numerical investigation of swirling fire plumes is pursued to understand how swirl alters the plume dynamics and combustion. One example is the ‘fire whirl’ which is known to arise naturally during forest fires. This buoyancy-driven fire plume entrains ambient fluid as heated gases rise. Vorticity associated with a mechanism such as wind shear can be concentrated by the fire, creating a vortex core along the axis of the plume. The result is a whirling fire. The current approach considers the relationship between buoyancy and swirl using a configuration based on fixing the heat release rate of the fire and imposing circulation. Large-eddy methodologies are used in the numerical analyses. Results indicate that the structure of the fire plume is significantly altered when angular momentum is imparted to the ambient fluid. The vertical acceleration induced by buoyancy generates strain fields which stretch out the flames as they wrap around the nominal plume centreline. The whirling fire constricts radially and stretches the plume vertically.(Some figures in this article are in colour only in the electronic version; see www.iop.org)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call