Abstract

Dirac particle represents a fundamental constituent of our nature. Simulation of Dirac particle dynamics by a controllable quantum system using quantum walks will allow us to investigate the non-classical nature of dynamics in its discrete form. In this work, starting from a modified version of one-spatial dimensional general inhomogeneous split-step discrete quantum walk we derive an effective Hamiltonian which mimics a single massive Dirac particle dynamics in curved (1 + 1) space-time dimension coupled to U(1) gauge potential—which is a forward step towards the simulation of the unification of electromagnetic and gravitational forces in lower dimension and at the single particle level. Implementation of this simulation scheme in simple qubit-system has been demonstrated. We show that the same Hamiltonian can represent (2 + 1) space-time dimensional Dirac particle dynamics when one of the spatial momenta remains fixed. We also discuss how we can include U(N) gauge potential in our scheme, in order to capture other fundamental force effects on the Dirac particle. The emergence of curvature in the two-particle split-step quantum walk has also been investigated while the particles are interacting through their entangled coin operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call