Abstract
IntroductionHigh erosion and sediment yield rates continue to pose a significant threat to the environment globally. Information on erosion and sediment rates is key for supporting effective and sustainable mitigation measures. Models that estimate sediment yield are vital in providing information about erosion and sediment yield rates, as empirical studies are prohibitive over large spatial and temporal scales.MethodsIn this study, we simulate daily sediment transport using the WQSED model and assess the effectiveness of the tool in providing crucial estimations of sediment yield. The model structure links the Modified Universal Soil Loss Equation (MUSLE) to a simple sediment storage component. The model was applied to the Odzi River catchment in Zimbabwe and The Rio Tanama River catchment in Puerto Rico, where daily observations of sediment yield exceeding a decade were available for calibration and validation.ResultsIn both catchments, we achieved a coefficient of efficiency and R2 and NSE of > 0.7 during model calibration and > 0.6 during model validation. The percentage bias remained below 45% for both calibration and validation periods.ConclusionThese results indicate that the WQSED model can be applied to provide estimates of sediment yield that are reliable for erosion, sediment yield and water quality management. An effective and relatively simple sediment yield model incorporating sediment storage is essential for catchment management in erosion-prone areas.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.