Abstract
Non-steady state deformation and annealing experiments on vein quartz are designed to simulate earthquake-driven episodic deformation in the middle crust. Three types of experiments were carried out using a modified Griggs-type solid medium deformation apparatus. All three start with high stress deformation at a temperature of 400 °C and a constant strain rate of 10 − 4 s − 1 (type A), some are followed by annealing in the stability field of α-quartz for 14–15 h at zero nominal differential stress and temperatures of 800–1000 °C (type A + B), or by annealing for 15 h at 900 °C and at a residual stress (type A + C). The quartz samples reveal a very high strength > 2 GPa at a few percent of permanent strain. The microstructures after short-term high stress deformation (type A) record localized brittle and plastic deformation. Statisc annealing (type A + B) results in recrystallisation restricted to the highly damaged zones. The new grains aligned in strings and without crystallographic preferred orientation, indicate nucleation and growth. Annealing at non-hydrostatic conditions (type A + C) results in shear zones that also develop from deformation bands or cracks that formed during the preceding high stress deformation. In this case, however, the recrystallised zone is several grain diameters wide, the grains are elongate, and a marked crystallographic preferred orientation indicates flow by dislocation creep with dynamic recrystallisation. Quartz microstructures identical to those produced in type A + B experiments are observed in cores recovered from Long Valley Exploratory Well in the Quaternary Long Valley Caldera, California, with considerable seismic activity. The experiments demonstrate the behaviour of quartz at coseismic loading (type A) and subsequent static annealing (type A + B) or creep at decaying stress (type A + C) in the middle crust. The experimentally produced microfabrics allow to identify similar processes and conditions in exhumed rocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.