Abstract
A procedure for generating multivariate nonnormal distributions is proposed. Our procedure generates average values of intercorrelations much closer to population parameters than competing procedures for skewed and/or heavy tailed distributions and for small sample sizes. Also, it eliminates the necessity of conducting a factorization procedure on the population correlation matrix that underlies the random deviates, and it is simpler to code in a programming language (e.g., FORTRAN). Numerical examples demonstrating the procedures are given. Monte Carlo results indicate our procedure yields excellent agreement between population parameters and average values of intercorrelation, skew, and kurtosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.