Abstract

AbstractIn 2020, the Chesapeake Bay Program moved to offset impacts from climate change for the 30‐year period from 1995 through 2025 by having its seven watershed jurisdictions (Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the District of Columbia) apply additional nutrient pollutant reduction practices. The climate change assessment was performed with integrated models of the Chesapeake watershed, airshed, and estuary. Scenarios run for the years 2025, 2035, 2045, and 2055 estimated effects from the different future climatic conditions. This article presents the results of that assessment and is intended to provide a guide to assist other modeling practitioners in assessing climate change impacts in coastal watersheds. Major influences of climate change that were quantified include increases in precipitation volume, potential evapotranspiration, watershed nutrient loads, tidal water temperature, and sea level. Minor influences quantified in the climate change analysis include changes in nutrient speciation and increases in wet deposition of nitrogen, CO2, rainfall intensity, tidal wetland loss, up‐estuary salt intrusion, and phytoplankton biomass. To offset climate change impacts from 1995 to 2025 on water quality, the scenarios indicate an additional 2.3 million and 0.3 million kg of nitrogen and phosphorus per annum, respectively, will need to be reduced beyond what is called for in the Chesapeake Total Maximum Daily Load.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.