Abstract
The degrees of freedom associated with orbital, spin, and charge ordering can strongly affect the properties of many crystalline solids, including battery materials, high-temperature superconductors, and naturally occurring minerals. This work reports on the development of a computational framework to systematically explore the ordering of electronic degrees of freedom and presents results on orbital ordering associated with Jahn–Teller distortions in four layered oxides relevant for Li- and Na-ion batteries: LiNiO2, NaNiO2, LiMnO2, and NaMnO2. Our calculations reveal a criterion for the stability of orbital orderings in these layered materials: each oxygen atom must participate in two short and one long transition-metal/oxygen bond. The only orderings that satisfy this stability criterion are row orderings, such as the “zigzag” ordering. The near degeneracy of such row-orderings in LiNiO2 suggests that boundaries between domains with distinct but symmetrically equivalent Jahn–Teller distortions will be r...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.