Abstract
Army senior military leaders are invested in acquiring modernized aerial platforms and equipment to augment the US Army’s ability to overcome Anti-Access Area Denial (A2AD) threats imposed by modern Integrated Air Defense Systems (IADS). A prominent element of this modernization effort is the employment of autonomous drones to defeat IADS threats while minimizing risk to Army Soldiers. This research utilizes a framework for classifying the levels of autonomous capability along three dimensions: the ability to act alone, the ability to cooperate, and the ability to adapt. A virtual combat model, created using the Advanced Framework for Simulation, Integration, and Modeling (AFSIM), simulates the engagement between an enemy IADS and a friendly formation comprised of autonomous drones, attack helicopters, and a Long Range Precision Fires (LRPF) capability. A designed experiment evaluates drone performance with varying levels of autonomy. The experimental results reveal that low levels of autonomy yield a 20.74% increase in survivability and a 5.52% increase in lethality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.