Abstract

Monte Carlo simulation and Percus-Yevick (PY) theory are used to investigate the structural properties of a two-component system of the Baxter adhesive fluids with the size asymmetry of the particles of both components mimicking an asymmetric binary colloidal mixture. The radial distribution functions for all possible species pairs, g(11)(r), g(22)(r), and g(12)(r), exhibit discontinuities at the interparticle distances corresponding to certain combinations of n and m values (n and m being integers) in the sum nsigma(1)+msigma(2) (sigma(1) and sigma(2) being the hard-core diameters of individual components) as a consequence of the impulse character of 1-1, 2-2, and 1-2 attractive interactions. In contrast to the PY theory, which predicts the delta function peaks in the shape of g(ij)(r) only at the distances which are the multiple of the molecular sizes corresponding to different linear structures of successively connected particles, the simulation results reveal additional peaks at intermediate distances originating from the formation of rigid clusters of various geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.