Abstract
The slowdown of Moore's law and the existence of the "von Neumann bottleneck" has led to electronic-based computing systems under von Neumann's architecture being unable to meet the fast-growing demand for artificial intelligence computing. However, all-optical diffractive neural networks provide a possible solution to this challenge. They can outperform conventional silicon-based electronic neural networks due to the significantly higher speed of the propagation of optical signals (≈108 m.s-1) compared to electrical signals (≈105 m.s-1), their parallelism in nature, and their low power consumption. The integrated diffractive deep neural network (ID2NN) uses an on-chip fully passive photonic approach to achieve the functionality of neural networks (matrix-vector operations) and can be fabricated via the CMOS process, which is technologically more amenable to implementing an artificial intelligence processor. In this paper, we present a detailed design framework for the integrated diffractive deep neural network and corresponding silicon-on-insulator integration implementation through Python-based simulations. The performance of our proposed ID2NN was evaluated by solving image classification problems using the MNIST dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.